环境信息
- ModelArts
- Notebook - Multi-Engine 2.0 (python3)
- JupyterLab - Notebook - Conda-python3
Pandas DataFrame merge 数据合并
import pandas as pd
df1 = pd.DataFrame({"SN":["A","B","C","A","A","B","D"],"value_1":[1,2,3,11,111,22,4],"time":pd.date_range(start='2021-3-1',periods=7)})
df2 = pd.DataFrame({"SN":["A","B","C","E"],"max":[1000,2000,3000,4000]})
df1

df2

pd.merge(df1,df2)

pd.merge(df1,df2,how="right")

pd.merge(df1,df2,how="left")

pd.merge(df1,df2,how="outer")

help
help(pd.merge)
Help on function merge in module pandas.core.reshape.merge:
merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
Merge DataFrame objects by performing a database-style join operation by
columns or indexes.
If joining columns on columns, the DataFrame indexes *will be
ignored*. Otherwise if joining indexes on indexes or indexes on a column or
columns, the index will be passed on.
Parameters
----------
left : DataFrame
right : DataFrame
how : {'left', 'right', 'outer', 'inner'}, default 'inner'
* left: use only keys from left frame, similar to a SQL left outer join;
preserve key order
* right: use only keys from right frame, similar to a SQL right outer join;
preserve key order
* outer: use union of keys from both frames, similar to a SQL full outer
join; sort keys lexicographically
* inner: use intersection of keys from both frames, similar to a SQL inner
join; preserve the order of the left keys
......
备注
- 欢迎各位同学一起来交流学习心得^_^
- 在线课程、沙箱实验、认证、论坛和直播,其中包含了许多优质的内容,推荐了解与学习。
(完)